Course Code: 23CS3T02

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE

(AUTONOMOUS)

II - B.Tech I-Semester Regular Examinations (BR23), Nov - 2024 Advanced Data Structures & Algorithms Analysis (Com. to CSE, CSE – AIDS & AIML)

Time: 3 hours

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer ALL the question in Part-A and Part-B

*

<u>PART-A (10X2 = 20M)</u>

		Marks	СО	BL
1 a)	What are the features of efficient algorithm?	(2M)	CO1	BL4
b)	Define Asymptotic Notations.	(2M)	CO1	BL4
c)	Define divide and conquer design technique	(2M)	CO2	BL3
d)	What are the non-linear data structures?	(2M)	CO2	BL3
e)	Write any two characteristics of Greedy Algorithm?	(2M)	CO3	BL3
f)	Define principle of optimality.	(2M)	CO3	BL3
g)	Write the difference between the Greedy method and Dynamic programming.	(2M)	CO4	BL4
h)	List out the implementation procedure of Backtracking	(2M)	CO4	BL4
i)	Define Polynomial reducible	(2M)	CO5	BL4
j)	What is the difference between tractable and intractable?	(2M)	CO5	BL4

<u>PART-B (5X10 = 50M)</u>

2a.	What do you mean by a balance factor in AVL tree and explain about LL & RR rotations with an example.	10(M)	CO1	BL4
(OR)				
3a.	What is a B-Tree. Specify its properties and describe the construction of a B-Tree for the following elements 5, 2, 13, 3, 45, 72, 4, 6, 9, 22.	10(M)	CO1	BL4

4a.	Consider the given elements 78,56,32,45,8,23,19 perform heap sort	5(M)	CO2	BL3
b.	Explain about Breadth First Search Traversal technique with an example.	5(M)	CO2	BL3
(OR)				
5a.	Mention the advantage of Stressan's matrix multiplication. Explain how the	10(M)	CO^2	BI 3
	Stressan's matrix multiplication works.			

	Apply the kruskals algorithm for below tree.			
6a		10(M)	CO3	BL3

(OR)				
7a.	Solve for Knapsack problem using Greedy method for the instance $n = 7$, profits $(p1 p7) = (105 157 618 3)$ and weights $(W1 W7) = (105 157 618 3)$	5(M)	CO3	BL3
	(2,3,5,7,1,4,1) and capacity of sack is m = 15	5(111)	005	DL3
b.	Explain the problem Job sequencing with Deadline and solve for $n = 5$, $(P1P5) = (20, 15, 10, 5, 1)$ and Deadlines $(D1D5) = (2, 2, 1, 3, 3)$.	5(M)	CO3	BL3

8a.	How many solutions are there to the eight queens problem? How many distinct solutions are there if we do not distinguish solution that can be transformed into one another by rotations and reflections?	10(M)	CO4	BL4
(OR)				
9a.	Explain traveling sales person problem?	10(M)	CO4	BL4

10a.	Give brief description about the cook's theorem and prove with example.	10(M)	CO5	BL4
(OR)				
11a.	Discuss in detail the different classes in NP hard and NP complete.	10(M)	CO5	BL4
