Course Code: 23BS3T04 BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

II-B.TechI-Semester Regular Examinations (BR23), November - 2024 Discrete Mathematics and Graph Theory (CSE, CSE AI&DS, AI&ML)

Time: 3 hours

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer **ALL** the question in **Part-AandPart-B**

<u>PART-A (10X2 = 20M)</u>

		Marks	CO	BL
1. a)	Prove that $\sim (p \rightarrow q)$ and $p \land \sim q$ are logically equivalent.	(2M)	CO1	BL5
b)	How can the English statement be translated into a logical expression	(2M)	CO1	BL2
	"You Cannot ride the roller coaster if your under 4 feet tall unless you are			
	older than 16 years old".			
c)	Draw Hasse diagram representing the partial ordering on $\{(a,b)/a \text{ divides } b\}$	(2M)	CO2	BL4
	on {2,3,6,24,36,48}.			
d)	If $A=\{1,2,3,4\}$ and R,S are relations on A defined by	(2M)	CO2	BL1
	$R = \{(1,2), (1,3), (2,4), (4,4)\}, S = \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4)\} \text{ find their }$			
	matrices.			
e)	State the Pigeon hole principle	(2M)	CO3	BL1
f)	Find the number of arrangements of the letters of MISSISSIPPI.	(2M)	CO3	BL1
g)	Briefly explain about Multigraph with suitable example.	(2M)	CO4	BL2
h)	Define Euler circuit, Hamilton cycle.	(2M)	CO4	BL1
i)	What is the chromatic number of the following i) K_n ii) $K_{m,n}$	(2M)	CO5	BL1
j)	Define Planar graph and give an example	(2M)	CO5	BL1

<u>PART-B (5X10 = 50M)</u>

2a.	Prove that $((P \lor Q) \land \sim (\sim P \land (\sim Q \lor \sim R))) \lor (\sim P \land \sim Q) \lor (\sim P \land \sim R)$ is a	5(M)	CO1	BL5
	tautology.			
b.	Test the validity of the following argument: "All dogs are barking, some animals	5(M)	CO1	BL4
	are dogs. Therefore, some animals are barking".			
(OR)				
3a.	Obtain the PCNF OF $P \lor (\sim P \rightarrow (Q \lor (\sim Q \rightarrow R))$.	5(M)	CO1	BL5
b.	Show that the premises "A Student in this class has not read the book", and	5(M)	CO1	BL5
	"Everyone in this class passed the first exam" imply the conclusion "Someone			
	who passed the first exam has not read the book".			

4a.	Given the functions $f(x) = x + 2$ and $g(x) = x - 2$, find the compositions fog	5(M)	CO2	BL2
	and <i>gof</i> .			
b.	If $A=\{1,2,3,4\}$ and $P=\{\{1,2\},\{3\},\{4\}\}$ is a partition of A. Find the Equivalence	5(M)	CO2	BL1
	relation determined by P.			
(OR)				
5a.	Given the functions $f(x) = 2x + 1$ and $g(x) = x^2$ find the compositions fog	5(M)	CO2	BL2

	and gof.			
b.	Prove that (S, \leq) is a Lattice, where $S = \{1, 2, 5, 10\}$ and \leq is for divisibility. Prove	5(M)	CO2	BL5
	that it is also a Distributive Lattice?			

ба.	Find the coefficient of (i) $x^3y^2z^2$ in $(2x - y + z)^9$, (ii) x^6y^3 in $(x - 3y)^9$.	5(M)	CO3	BL3
b.	Solve the recurrence relation $a_n + a_{n-1} - 6a_{n-2} = 0$ for $n \ge 2$.	5(M)	CO3	BL3
	given $a_0 = -1, a_1 = 8$.			
(OR)				
7a.	Solve the recurrence relation $a_n - 9a_{n-1} + 20a_{n-2} = 0$ for $n \ge 2$.	5(M)	CO3	BL3
	given $a_0 = -3, a_1 = -10$.			
b.	Define generating functions. Determine the generating function for the sequence	5(M)	CO3	BL5
	$a_n = 2^n$ for n ≥ 0 .			

8a.	Suppose that G is a non directed graph with 12 edges. Suppose that G has 6	5(M)	CO4	BL5
	vertices of degree 3 and the rest have degree less than 3. Determine the minimum			
	number of vertices G can have.			
b.	Show that the two graphs given below are isomorphic.	5(M)	CO4	BL4
	$d_2 \bullet d_2 $			
	(OR)			
9a.	Find the number of vertices, the number of edges, and the degree of each vertex in the given undirected graph. Identify all isolated and pendant vertices.	5(M)	CO4	BL1
b.	Explain the step by step procedure to verify whether two graphs are isomorphic or not with an example.		CO4	BL4

10a	Explain Breadth First Search Algorithm with suitable example.	5(M)	CO5	BL3
b.	Explain Kruskal's algorithm to find the minimal spanning tree with an example.	5(M)	CO5	BL3
(OR)				
11a	Use Prim's algorithm to find a minimum spanning tree in the graph	5(M)	CO5	BL3

	$a \qquad 5 \qquad b \qquad 4 \qquad c \\ 2 \qquad 3 \qquad 5 \qquad 6 \qquad 3 \\ d \qquad 7 \qquad e \qquad 1 \qquad f \\ 4 \qquad 8 \qquad 3 \qquad 4 \qquad h \qquad 2 \qquad i$			
b.	Explain Depth First Search Algorithm with suitable example.	5(M)	CO5	L3
