Course Code: 23BS2T04

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE

(AUTONOMOUS)

I - B. TechII-Semester Supplementary Examinations (BR23), Sep/Oct - 2024 Differential Equations & Vector Calculus (All Branches)

Time: 3 hours

Question Paper consists of Part-A and Part-B Answer ALL the question in Part-A and Part-B				
	PART-A (10X2 = 20M)			
		Marks	CO	
1. a) Solve the diff	ferential equation $x dy - y dx = a(x^2 + y^2)dy$	(2M)	CO 1	
b) State Newton	's Law of Cooling.	(2M)	CO 1	
c) Define Linear	r differential equations in y	(2M)	CO 2	
d) Find Particula	ar Integral of $(D^3 - 5D^2 + 8D - 4)y = e^{2x}$	(2M)	CO 2	
	tial differential equation by eliminating the arbitrary constants $x + a + \sqrt{y + b}$	(2M)	CO 3	
Solve $[D^3 - 1]$	$3D^2D' + (D')^3]z = 0.$	(2M)	CO 3	
g) Define directi	ional derivative of Scalar point function	(2M)	CO 4	
h) Prove that $\bar{F} =$	$= yz\bar{\imath} + zx\bar{\jmath} + xy\bar{k}$ is irrotational	(2M)	CO 4	
	ivergence theorem.	(2M)	CO 5	
j) If $\bar{F} = 3xy\bar{\imath}$ from $(0,0)$ to	- $y^2 \bar{j}$ evaluate $\int_c \bar{F} d\bar{r}$ where C is the curve $y = 2x^2$ in the xy-plane (1,2)	(2M)	CO 5	
	PART-B (5X10 = 50M)			
.a) (i) Solve the diff	ferential equation $(x^4 + y^4)dx - xy^3dy = 0$.	5(M)	CO 1	
(ii) Solve the dif	fferential equation $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$	5(M)	CO 1	
/	(OR)			
	re of the body is changing from 100°c to 70°c in 15 minutes, fir rature will be 40°c, if the temperature of air is 30°c.	d 10(M)	CO 1	
(i) Solve the diff $y^1(0)=3$	ferential equation $y^{11} - 4y^1 + 3y = 4e^{3x}$, given that y(0)=-1,	5 (M)	CO 2	
	ferential equation $(D^2 - 2D + 1)y = x^2e^{3x} - Sin2x + 3$ (OR)	5 (M)	CO 2	
) Solve the differe	ential equation $(D^2 + a^2)y = Secax$ using method of variation of	10(M)	CO 2	

Max. Marks: 70

parameters.

- 4.a) (i) Form the partial differential equation by eliminating an arbitrary function from 5 (M) CO 3 L1 $z = xy + f(x^2 + y^2)$.
 - (ii) Find Solution of $px^2 + qy^2 = z^2$. 5 (M) CO 3 L3

Solve
$$\frac{\partial^2 z}{\partial x^2} - 6 \frac{\partial^2 z}{\partial x \partial y} + 9 \frac{\partial^2 z}{\partial y^2} = 12x^2 + 36xy$$
.

- 5.a) (i) Find the Directional derivative of a scalar point function $\varphi(x, y, z) = 4xy^2 + 5(M)$ CO 4 L1 $2x^2yz$ at the point A(1,2,3) in the direction of the line AB, where B=(5,0,4)
 - (ii) Prove that $div(grad r^m) = m(m+1)r^{m-2}$ 5(M) CO 4 L4
- b) Find constants a, b, c so that the vector $\mathbf{A} = (\mathbf{x} + 2\mathbf{y} + \mathbf{az}) \mathbf{i} + (\mathbf{b} \ \mathbf{x} 3\mathbf{y} \mathbf{z}) \mathbf{j} + (4\mathbf{x} + \mathbf{cy} + 2\mathbf{z}) \mathbf{k}$ 10(M) CO 4 L1 is irrotational. Also find ϕ such that $\mathbf{A} = \nabla \phi$.
- 6.a) (i) If $\bar{F} = (5xy 6x^2)\bar{\imath} + (2y 4x)\bar{\jmath}$, evaluate $\int_C \bar{F} \cdot d\bar{r}$ along the curve C in the 5(M) CO 5 L6 y-plane $y = x^3$ from (1, 1) to (2, 8).
 - (ii) Evaluate $\int_{S} \bar{f} \cdot \bar{n} ds$ where $\bar{f} = zi + xj 3y^2zk$ and S is the surface $x^2 + y^2 = 5$ (M) CO 5 L6 16 included in the first octant between z=0 and z=5.
- Verify Green's theorem for $\oint_C (3x^2 8y^2)dx + (4y 6xy)dy$, where C is the boundary of the region bounded by x = 0, y = 0 and x+y=1*********