II Year - I Semester

]	L	T	P	C
1	3	0	0	3

NUMERICAL METHODS & COMPLEX VARIABLES (23BS3T02) (Electrical and Electronics Engineering)

Course Objectives:

- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To familiarize the complex variables.
- To equip the students to solve application problems in their disciplines.

Course Outcomes: At the end of the course Student will be able to

- 1. Apply numerical methods to find the solution algebraic and transcendental equations and interpolate the polynomials (L3).
- 2. Apply numerical methods to evaluate the definite integrals and to find the solution of initial value problems (L3).
- 3. Find the continuity, analyticity of functions of complex variables and different types of complex integrals(L3).
- 4. Evaluate the Taylor and Laurent expansions of simple functions, determine the nature of the singularities and calculate the residues. (L3).
- 5. Explain properties of various types of conformal mappings (L5).

RAL		and the section of	or - creat arest of the con-
Mr. B Sesha Rao	Dr. GVSR Deekshitulu	Dr. G Venkata Rao	Dr. M Bala Prabhakar
Chairman	University Nominee	Subject Expert-I	Subject Expert-2
BoS Members	Dr. NVSRC Murty Gamini	Mr. B Simhadri Rao	Mr. V Seshu Kumar
		The Research	
	Mar CNDC Vani	DANG A Current	NA. 10 10 10 0 1

UNIT - I: Iterative Methods:

Introduction - Solutions of algebraic and transcendental equations: Bisection method -Secant method - Method of false position - General Iteration method - Newton-Raphson method (Simultaneous Equations)

Interpolation: Forward, backward and central difference operators - Properties -Newton's forward and backward formulae for interpolation - Interpolation with unequal intervals - Lagrange's interpolation formula.

UNIT - II: Numerical integration, Solution of ordinary differential equations with

Trapezoidal rule - Simpson's 1/3rd and 3/8th rule - Solution of initial value problems by Taylor's series - Picard's method of successive approximations - Euler's method - Modified Euler's Method - Runge- Kutta method (second and fourth order) - Milne's Predictor and

UNIT - III: Functions of a complex variable and Complex integration:

Introduction - Limits - Continuity - Differentiability - Analyticity - Cauchy-Riemann equations in Cartesian and polar coordinates - Harmonic and conjugate harmonic functions - Milne -Thompson method.

Complex integration: Line integral - Cauchy's integral theorem - Cauchy's integral formula - Generalized integral formula (all without proofs) and problems on above theorems.

UNIT - IV: Series expansions and Residue Theorem:

Radius of convergence - Expansion of function in Taylor's series, Maclaurin's series and

Types of Singularities: Isolated – Essential singularities – Pole of order m – Residues – Residue theorem (without proof) – Evaluation of real integral of the types $\int_{-\infty}^{\infty} f(x)dx$ and

UNIT - V: Conformal mapping:

Transformations - e^z , $\ln z$, z^2 , z^n (n positive integer), $\sin z$, $\cos z$, $z + \frac{a}{z}$. Translation, rotation, inversion and bilinear transformation - fixed point - cross ratio - properties -invariance of circles and cross ratio - determination of bilinear transformation mapping given 3 points.

Mr. B Sesha Rao Chairman	Dr. GVSR Deekshitulu University Nominee	Dr. G Venkata Rao Subject Expert-I	Dr. M Bala Prabhaka Subject Expert-2
BoS Members	Dr. NVSRC Murty Gamini	Mr. B Simhadri Rao	Mr. V Seshu Kumar
	Mrs. SNPG Vani	Mrs. A Sravani	3 Mr. KVNVS Prasad

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Micheael Greenberg, Advanced Engineering Mathematics, 2nd Pearson edition.
- 3. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- 4. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 5. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 9th edition, Mc-Graw Hill, 2013.

Mr. B Sesha Rao Chairman	Dr. GVSR Deekshitulu University Nominee	Dr. G Venkata Rao Subject Expert-I	Dr. M Bala Prabhakar Subject Expert-2
BoS Members	Dr. NVSRC Murty Gamini	Mr. B Simhadri Rao	Mr. V Seshu Kumar
	Mrs. SNPG Vani	Mrs. A Sravani	Mr. KVNVS Prasad