Course Code: 23BS3T02 Bonam Venkata Chalamayya Institute of Technology & Science, (Autonomous) II B.Tech I Semester Regular Examinations (BR23), November-2024

NUMERICAL METHODS AND COMPLEX VARIABLES

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part A & Part B Answer All the questions in Part A & Part B

Part A(10 X 2 = 20M)

1.a	Find the first approximation of $e^x sinx = 1$ by using Bisection method.							CO1	L2
b	Prove that $\mu^2 = 1 + \frac{\delta^2}{4}$.							CO1	L3
c	Find $\int_0^2 f(x) dx$ from the following data and using Trapezoidal rule.							CO2	L2
	x	0	0.5	1	1.5	2	×		
	f(x)	0	0.25	1	2.25	4			
d	Write RK method of 2 nd order formula.							CO2	L1
e	Define analytic function and entire function.							CO3	L1
f	State Cauchy's Integral Formula.							CO3	L1
g	Find the residue of the function $f(z) = \frac{2z+4}{(z+1)(z^2+1)}$ at $z = i$.							CO4	L2
h	Write the Laurent series of the function $f(z)$ having the center at						[2M]	CO4	L1
	z = a.								
i	Define Conformal Mapping.							CO5	L1
j	Find the image of the circle $ z = 2$, under the transformation							CO5	L2
	w = z + 3 + 2i.								

Part B (5 X 10 = 50)

2.a.										L2
	method.									
b. Using Lagrange's interpolation formula, find the value of $y(10)$ from $5(M)$										L2
	the following table:									
		x	5	6	9	11				
		у	12	13	14	16				
OR										

3	а	Evaluate $\sqrt{28}$ to four decimal places using Newton-Raphson method.	5(M)	CO1	L3
	b	Find the Newton's Forward difference interpolating polynomial forthe following data and hence find $f(2.5)$ from the polynomial. x 0123	5(M)	CO1	L2
		y = f(x) 1 3 7 13			
4	а	Evaluate $\int_0^6 \frac{1}{1+x} dx$ by using Simpson's 3/8th rule.	5(M)	CO2	L3
	b	Given that $\frac{dy}{dx} = 1 + xy$ and $y(0) = 1$, compute $y(0.1)$ and $y(0.2)$ using Picard's method	5(M)	CO2	L3
		OR			
5	a	Find $y(0.1)$ from the differential equation $y' = x - y^2$, $y(0) = 1$ by using Taylor's series method	5(M)	CO2	L2
	b	Use Runge-Kutta method of fourth order to evaluate $y(0.1)$ and given that $y' = x + y, y(0) = 1$.	5(M)	CO2	L3
6	а	If $f(z)$ is a regular function of z, then prove that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] f(z) ^2 = 4 f'(z) ^2$	5(M)	CO3	L5
	b	Find the analytic function whose imaginary part is $e^{x}(x \sin y + y \cos y)$.	5(M)	CO3	L2
		OR			
7	a	Show that the function $u(x, y) = x^3 - 3xy^2$ is harmonic and find its harmonic conjugate.	5(M)	CO3	L2
	b	Evaluate $\int_c \frac{e^{2z}}{(z-1)(z-2)} dz$ where <i>c</i> is the circle $ z = 3$.	5(M)	CO3	L3
8	а	Obtain the Taylor's series expansion to represent the function $\frac{z^2-1}{(z+2)(z+3)}$ in the region $ z < 2$.	5(M)	CO4	L3
	b	Evaluate by residue theorem $\int_c \frac{ze^z}{(z^2+9)} dz$, where <i>c</i> is the circle $ z = 5$.	5(M)	CO4	L3
		OR	1	LL	
9	a	Obtain the Laurent's series of the function $\frac{z+3}{z(z^2-z-2)}$ in powers of z where $1 < z < 2$	5(M)	CO4	L3
	b	Show that by method of residues $\int_0^{\pi} \frac{d\theta}{a+b\cos\theta} = \frac{\pi}{a^2-b^2}$, $a > b > 0$.	5(M)	CO4	L2
4.5		A			
10	а	Show that the function $w = \frac{4}{z}$ transforms the straight line $x = c$ in the <i>z</i> -plane into a circle in the <i>w</i> -plane.	5(M)	CO5	L2
	b	Find the bilinear transformation which maps the points ∞ , <i>i</i> , 0 in the <i>z</i> -plane into -1 , $-i$, 1 in the <i>w</i> -plane.	5(M)	CO5	L2
	I	OR	I		
11	a	Show that the transformation $w = z^2$ maps the circle $ z - 1 = 1$ into the cardioid $r = 2(1 + \cos \theta)$ where $w = re^{i\theta}$ in w-plane.	5(M)	CO5	L2
	b	Find the fixed points of the following transformations. (i). $w = \frac{2i-6z}{iz-3}$ (ii). $w = \frac{6z-9}{z}$	5(M)	CO5	L2
		iz-3 (11). $w - z$			