Course Code: 23CE3T02 BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

II - B.Tech I-Semester Regular Examinations (BR23), DECEMBER - 2024 STRENGTH OF MATERIALS (CIVIL ENGINEERING)

Time: 3 hours

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer **ALL** the question in **Part-A and Part-B**

<u>PART-A (10X2 = 20M)</u>

		Marks	СО	BL
1. a)	Define Hooke's Law.	(2M)	CO1	BL2
b)	Find the Young's Modulus glass rod of dia 30mm & length	(2M)	CO1	BL3
	250mm, which is subjected to tensile load of 60KN when the			
	extension of $rod = 0.3 mm$			
c)	What are the different Types of beams & Loads.	(2M)	CO2	BL2
d)	Derive the expression for Cantilever Beam with Point Load.	(2M)	CO2	BL2
e)	Derive Section Modulus of Rectangular section	(2M)	CO3	BL2
f)	Write the Assumptions of Theory of simple bending.	(2M)	CO3	BL2
g)	Explain Moment Area Method.	(2M)	CO4	BL2
h)	Define Mohr's Theorem.	(2M)	CO4	BL2
i)	What are the Limitations of Euler's Theory.	(2M)	CO5	BL2
j)	Differentiate between Columns & Struts.	(2M)	CO5	BL2

<u>PART-B (5X10 = 50M)</u>

2	A load of 450 KN is supported by a square reinforced concrete (RC) column of size 300×300 mm. The column is reinforced with 4 reinforcing bars of 20 mm diameter. If the modulus of elasticity of steel is 16 times that of concrete, find (i) the stresses in steel and concrete (ii) If the stress in concrete is limited to 5 MPa, what is the cross-sectional area of steel required to carry an axial load of 500 N	10(M)	CO1	BL3
	500kN.			
	(OR)	-		
3	A composite bar of length 900 mm is made up of an aluminium bar of length	10(M)	CO1	BL3
	450 mm and the steel bar of length 400 mm. The cross-sectional areas of			
	aluminium and steel bars are 120 mm \times 120 mm and 80 mm \times 80 mm			
	respectively. Assuming that the bars are prevented from buckling sideways,			
	calculate the compressive force P to be applied to the composite bar that will			
	cause the total length of the bar to decrease by 0.4 mm. Assume the modulus of			
	elasticity of aluminium and steel as 72 KN/mm2 and 200 KN/mm2 respectively.			

4	Draw shear force and bending moment diagrams for the beam shown in fig.	10(M)	CO2	BL3

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
-	•••			
	(OR)			
5	A cantilever of span 4 m, carries a uniformly distributed load of 10 KN/m over	10(M)	CO2	BL3
	the entire length, in addition to point load of 30 HN at the free end and a couple			
	of 20 KN-m at mid span. Draw the SF and BM diagrams indicating salient			
	values.			

6	A T – section has a flange width of 200 mm, depth 150 mm and thickness	10(M)	CO3	BL3
	20 mm. It is subjected to shear force of 120 KN at a section, find the maximum			
	shear stress and also draw the shear stress distribution diagram.			
(OR)				
7	A beam of I – section is having overall depth as 500 mm and overall width as	10(M)	CO3	BL3
	190 mm. The thickness of flanges is 25 mm whereas thickness of web is			
	15 mm. If the section carries a shear force 40 KN, calculate the maximum shear			
	stress and also draw the shear stress distribution across the section.			

8	A cantilever beam of length 6m, carries an UDL of 12 KN/m for a distance of 4 m from the fixed end. Find the deflection and slope at a distance of 4 m from the fixed support and at the free end using Moment Area method. Assume constant	10(M)	CO4	BL3
	Moment of Inertia throughout the beam.			
	Take $E = 2.1 \times 105$ MPa and $I = 89 \times 106$ mm4.			
	(OR)			
9	A steel girder of uniform cross-section is 16m long and is simply supported at	10(M)	CO4	BL3
	the ends. It carries a concentrated load of 125 KN at 6 m from the left end. It also			
	carries an udl of 15kN/m from a distance, 12m to 16m from left support.			
	Calculate the deflection under the point load and the maximum deflection in the			
	girder. Take I = 70×10 -4 m4 and E = 206 KN/mm2. Use Double Integration			
	method.			

10a	A thin cylindrical pressure vessel has an internal diameter of 150 mm and a wall	5(M)	CO5	BL3
	thickness of 5 mm. It is subjected to an internal pressure of 7 N/mm2. If the			
	cylinder is 900 mm long and $E = 200$ GPa, find the stresses induced and also find			
	the Poisson's ratio for the material if the change in volume under this pressure is			
	15,000 mm3.		CO5	
b.	Find the thickness of metal required for a cylindrical shell of internal diameter 120			BL3
	mm to withstand an internal pressure of 40 MPa. The maximum hoop stress is not	5(M)		
	to exceed 130 MPa.			
	(OR)			
11a	A cylinder 120 cm long and 20 cm internal diameter having thickness is 15 mm	5(M)	CO5	BL3
	is filled with fluid at atmospheric pressure. If an additional 20 cm3 of fluid is			

	pumped into cylinder, find the pressure exerted by the fluid on the cylinder and hoop stress. Take $E = 200$ GPa and $v = 0.3$.			
b.				
	A thick cylinder of internal radius 50 mm and external diameter 100 mm is			
	subjected to an external pressure of 25 MPa and internal pressure of 70 MPa.	5(M)	CO5	BL3
	Find the maximum hoop and radial stresses.			
