Course Code: 23EC3T02 BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS) II-B.Tech I-Semester Regular Examinations (BR23), November- 2024 SWITCHING THEORY AND LOGIC DESIGN (ECE)

Time: 3 hours

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer ALL the question in Part-AandPart-B

<u>PART-A (10X2 = 20M)</u>

		Marks	CO	BL
1. a)	Convert the following.i. $(AB.CD)_{16} = ()_{10}$ ii. $(123.321)_8 = ()_{10}$	(2M)	CO1	BL3
b)	Perform the following subtraction in binary using 1's and 2's complement method: $(677)_{10} - (899)_{10}$	(2M)	CO1	BL3
c)	Implement the following function using only NOR gates $F=a. (b+c.d) + (b. c)$	(2M)	CO2	BL3
d)	Design Half Adder and Draw the logic Diagram with its Truth Table	(2M)	CO2	BL2
e)	Design and implement a two bit comparator using logic gates	(2M)	CO3	BL2
f)	Design a 1:8 demultiplexer using two 1:4 demultiplexer.	(2M)	CO3	BL2
g)	What are the differences between Latches and Flip Flops	(2M)	CO4	BL2
h)	Write the differences between combinational and sequential circuits.	(2M)	CO4	BL2
i)	Draw the logic diagram of Meelay and Moore models and also explain their operation with examples	(2M)	CO5	BL2
j)	Explain the procedure of Meelay to Moore conversion.	(2M)	CO5	BL2

<u>PART-B (5X10 = 50M)</u>

2a.	Given the 8 bit data word 01011011, generate the 12 bit composite word for the	5(M)	CO1	BL3
	hamming code that corrects and detects single errors.			
b.	Convert the Boolean function $F(A,B,C,D) = A+BC+ACD$ into standard POS	5(M)	CO1	BL3
	form.			
	(OR)			
	(OR)			
3a.	(OR) Perform the following addition using excess-3 code i)386+756 ii)254+ 579	5(M)	CO1	BL3
3a. b.	(OR) Perform the following addition using excess-3 code i)386+756 ii)254+ 579 A 7 bit Hamming code is received as 1110101.Is there any error? If yes, locate	5(M) 5(M)	CO1 CO1	BL3 BL3
3a. b.	(OR) Perform the following addition using excess-3 code i)386+756 ii)254+ 579 A 7 bit Hamming code is received as 1110101.Is there any error? If yes, locate the position of the error bit. Parity checks are created by odd parity.	5(M) 5(M)	CO1 CO1	BL3 BL3

4a.	Using the Quine–McCluskey tabular method, find the minimum sum of products for $F(A,B,C,D,E) = \sum m(1,5,6,7,9,13,14,15,17,18,19,21,22,23,25,29,30)$	5(M)	CO2	BL3	
b.	Design a BCD adder circuit and explain its operation	5(M)	CO2	BL3	
	(OR)				

5a.	Design a circuit to convert BCD code to Excess 3 code using discrete Logic gates.	5(M)	CO2	BL2
b.	Simplify the following using K- map and implement the same using NAND gates.	5(M)	CO2	BL2
	Y (A, B, C,D,E) = $\Sigma m(0,2,4,5,6,7,11,14,16,20,24,26,29,31) + d(9,12,18,27)$			

ба.	Tabulate the PLA programming table for the four Boolean functions listed below $A(x,y,z) = \sum m(1, 2, 4, 6) B(x,y,z) = \sum m(0, 1, 6, 7) C(x,y,z) = \sum m(2,6)$ $D(x,y,z) = \sum m(1, 2, 3, 5, 7)$	5(M)	CO3	BL3
b.	Realize the function $f(A,B,C,D) = \Sigma (1,3,4,6,7,8,10,13,15)$ using i) 16:1 MUX ii)	5(M)	CO3	BL3
	8:1 MUX			
	(OR)			
7a.	Implement the following functions using a PROM i) $F(w,x,y,z)=\Sigma(1,9,12,15)$ ii)			
	$G(w,x,y,z) = \Sigma(0,1,2,3,4,5,7,8,10,11,12,13,14,15)$	5(M)	CO3	BL3
b.	Define decoder. Construct IC74LS138 decoder using logic gates and truth table	5(M)	CO3	BL2

8a.	Draw the logic diagram of a SR latch using NOR gates. Explain its Operation		CO4	BL2
	using excitation table			
b.	Convert D flip-flop into T and JK flip-flops.	5(M)	CO4	BL2
	(OR)			
9a.	Draw and explain the logic diagram for a 4-bit binary ripple down counter using			
	positive edge triggered flip-flops	5(M)	CO4	BL2
b.	Draw a 4-bit bi-directional shift register logic diagram and explain its operation	5(M)	CO4	BL2

10a	Reduce th	e number of state	es in the following state tabl	e and tabulate the reduced			
	state table	state table.					
		NS, O/P		S, O/P			
		PS	X=0	X=1]		
		a	f, 0	b, 0			
		b	d, 0	c, 0	$10(\mathbf{M})$	COS	DI 2
		с	f, 0	e, 0	10(101)	COS	DL3
		d	g, 1	a, 0			
		e	d, 0	c, 0			
		f	f, 1	b, 1			
		g	g, 0	h, 1			
		h	g, 1	a, 0			
			(OR)		•		
11a	Convert th	ne following Mea	ly machine into a correspon	ding Moore machine:			

	$\begin{array}{ c c c c c } PS & NS,Z & \\ \hline X=0 & X=1 \\ \hline A & C,0 & B,0 \\ \hline B & A,1 & D,0 \\ \hline C & B,1 & A,1 \\ \hline D & D,1 & C,0 \\ \hline \end{array}$	5(M)	CO5	BL3
	A sequential circuit has one input and one output .The state diagram is shown			
b.	below. Design the sequential circuit with D flip-flops			
		5(M)	CO5	BL3
	1/0 $0/0$ $0/1$ $1/10/0$ $0/0$ $1/1$ $1/11/0$ $1/0$ $1/1$ $1/1$ $1/0$ $1/1$ $1/0$ $1/1$ $1/0$			
