Course Code: 23MB3C02

## BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE(AUTONOMOUS)

### I-MBAIII-Semester Model Paper (BR23), January - 2024

#### SUBJECT NAME: OPERATIONS RESEARCHBRANCH: MBA

Time: 3 hours

Max. Marks: 70

# PART - A Answer ONE Question from each UNIT (5 x 12 = 60 Marks) All Questions Carry Equal Marks PART - B Compulsory (1 x 10 = 10 Marks)

#### PART-A

|      | UNIT-I                                                                                                                                                                                                              | Marks | CO  | BL                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----------------------|
| 1.a) | What are the advantages of operation research?                                                                                                                                                                      | 6M    | CO1 | L1                   |
| b)   | Solve the following LPP using Graphical Method<br>Objective function Min $Z=20x + 10y$<br>Subject to the constraints $x + 2y \le 40$ , $3x + y \ge 30$ , $4x + 3y \ge 60$ ,<br>Non negative conditions $x,y\ge 0$ . | 6M    | CO1 | L3                   |
|      | OR                                                                                                                                                                                                                  |       |     | 5-5-5-1.<br>10-1-1-1 |
| 2.a) | Solve the following LPP using Big-M method Minimise $Z = 600x_1 + 500x_2$<br>Subject to constraints $2x_1 + x_2 \ge 80$ , $x_1 + 2x_2 \ge 60$ and $x_1, x_2 \ge 0$ .                                                | 12M   | CO1 | L3                   |

|      |                 | f.             |              | UNIT-II        |                |                |              | Marks | CO  | BL |
|------|-----------------|----------------|--------------|----------------|----------------|----------------|--------------|-------|-----|----|
| 3.a) | Solve t         | he following   |              | CO2            | L3             |                |              |       |     |    |
|      |                 |                | $W_1$        | W <sub>2</sub> | W <sub>3</sub> | W <sub>4</sub> | Availability |       |     |    |
|      |                 | F <sub>1</sub> | 19 3         |                | 50             | 10             | 7            | 12M   |     |    |
|      |                 | F <sub>2</sub> | 70           | 30             | 40             | 60             | 9            | 12111 |     |    |
|      |                 | F <sub>3</sub> | 40           | 8              | 70             | 20             | 18           |       |     |    |
|      |                 | Requirement    |              | 8              | 7              | 14             |              |       |     |    |
|      |                 |                |              |                | (              | )R             |              |       |     |    |
| 4.a) | Explain         | n Hungarian    | method of    | assignm        | ent prol       | olem?          |              | 6M    | CO2 | L4 |
| b)   | Solve to below. | he travelling  | ı            | CO2            | L3             |                |              |       |     |    |
|      |                 |                | A B          | C              |                | )              |              |       |     |    |
|      |                 | A              | o 46         | 16             | 4              | 0              |              | 6M    |     |    |
|      |                 | B              | <b>1</b> 1 ∞ | 50             | 4              | 0              |              | Olvi  |     |    |
|      |                 | C 8            | 32 32        | $\infty$       | 6              | 0              |              |       |     |    |
|      |                 | D 4            | 10 40        | 36             |                |                |              | 1     |     |    |

| UNIT-III | Marks | CO | BL |
|----------|-------|----|----|

| 5.a) | What are the features of dynamic programming problem and explain it?                                                                                                                          | 6M  | CO3 | L1 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
| b)   | Use dynamic programming to solve the LPP Maximize $Z = x_1 + 9x_2$<br>Subject to the constraints $2x_1 + x_2 \le 25$ , $x_2 \le 11$ , $x_1, x_2 \ge 0$ .                                      | 6M  | CO3 | L4 |
|      | OR                                                                                                                                                                                            |     |     |    |
| 6.a) | Use Branch and bound technique to solve the following Maximize $Z = x_1 + 4x_2$<br>Subject to the constraints $2x_1 + 4x_2 \le 7$ , $5x_1 + 3x_2 \le 15$ , $x_1, x_2 \ge 0$ and are integers. | 12M | CO3 | L3 |

|      |                                                                                                                                                                                 |                  |                   | UNIT-IV  | V        |          |      |                                        | Marks | CO  | BL |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|----------|----------|----------|------|----------------------------------------|-------|-----|----|
| 7.a) | Define str                                                                                                                                                                      | 6M               | CO4               | L1       |          |          |      |                                        |       |     |    |
| b)   |                                                                                                                                                                                 | owing two<br>Pla | o-person<br>yer B | zero-sum | game sta | ble? Sol |      | ame                                    | 6M    | CO4 | L4 |
|      |                                                                                                                                                                                 |                  |                   |          | 0        | R        |      | ************************************** |       |     |    |
| 8.a) | Explain N                                                                                                                                                                       | Ionte-Car        | lo simul          | ation?   |          |          |      |                                        | 6M    | CO4 | L4 |
| b)   | A manufa<br>experience                                                                                                                                                          | <i>3</i>         | CO4               | L3       |          |          |      |                                        |       |     |    |
|      | Daily De                                                                                                                                                                        | emand            | 5                 | 10       | 15       | 20       | 25   | 30                                     |       |     |    |
|      | Probabil                                                                                                                                                                        | ity              | 0.01              | 0.20     | 0.15     | 0.50     | 0.12 | 0.02                                   | 6M    |     |    |
|      | Use the following sequence of random numbers to simulate the demand for next 10 days. Also find out the average demand per day.  Random numbers: 25,39,65,76,12,05,73,89,19,49. |                  |                   |          |          |          |      |                                        |       | _   |    |

|       |                                                                                                                                                                                | Marks | CO  | BL |   |    |     |   |       |       |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----|---|----|-----|---|-------|-------|--|--|
| 9.a)  | Define replacen with example?                                                                                                                                                  | 6M    | CO5 | L1 |   |    |     |   |       |       |  |  |
| b)    | What are the dif                                                                                                                                                               | 6M    | CO5 | L1 |   |    |     |   |       |       |  |  |
|       |                                                                                                                                                                                |       |     |    |   | OR |     | , |       |       |  |  |
| 10.a) | Consider the fol                                                                                                                                                               |       | CO5 | L3 |   |    |     |   |       |       |  |  |
|       | Activity                                                                                                                                                                       | A     | В   | C  | D | E  | F   | G | Н     |       |  |  |
|       | Predecessor                                                                                                                                                                    | -     | A   | A  | В | В  | D,E | D | C,F,G | 1 /4. |  |  |
|       | Time(days)                                                                                                                                                                     | 2     | 4   | 8  | 3 | 2  | 3   | 4 | 8     | 12M   |  |  |
|       | Draw an arrow diagram for the project, compute the earliest and the latest event times. What is the minimum project completion time? List the activities on the critical path. |       |     |    |   |    |     |   |       |       |  |  |

PART - B

|        |                                                                                                                                                                                      |       |    | CA  | ISE S | TUDY | 7  |    |   |             |    |    | Marks | CO | BL |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|-------|------|----|----|---|-------------|----|----|-------|----|----|
| F      | rom the dat<br>ulkerson's<br>ut the forwa<br>I for all noo                                                                                                                           | rying |    | CO5 | L4    |      |    |    |   |             |    |    |       |    |    |
| I      | Task                                                                                                                                                                                 | A     | В  | C   | D     | E    | F  | G  | Н | I           | J  | K  |       |    |    |
|        | Least time                                                                                                                                                                           | 4     | 5  | 8   | 2     | 4    | 6  | 8  | 5 | 3           | 5  | 6  |       |    |    |
|        | Most<br>likely time                                                                                                                                                                  | 5     | 7  | 11  | 3     | 7    | 9  | 12 | 6 | 5           | 8  | 9  | 10M   |    |    |
| T      | Maximum                                                                                                                                                                              | 8     | 10 | 12  | 7     | 10   | 15 | 16 | 9 | 7           | 11 | 13 |       |    |    |
| P<br>H | Precedence relationship: A,C,D can start simultaneously E>B,C: F,G>D: H,I>E,F: J>I,G: K>H:B>A. Also determine i) Critical path ii) Probability of completing the project in 40 days. |       |    |     |       |      |    |    |   | 785a<br>6-3 |    |    |       |    |    |

Page 3 of 3