Course Code: 23CE4T02SET-2

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

II-B. TechII-Semester Regular Examinations (BR23), Apr/May - 2025 STRUCTURAL ANALYSIS (Civil Engineering)

Time: 3 hours

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer ALL the question in Part-AandPart-B

PART-A (10X2 = 20M)

		Marks	CO	BL
1. a)	Difference between cantilever and portal frame method	(2M)	CO1	BL2
b)	Define static indeterminacy. How is it calculated for a planar structure?	(2M)	CO1	BL2
c)	Draw the SFD and BMD for a fixed beam subjected to a central point load	(2M)	CO2	BL2
d)	Determine the static and kinematic indeterminacy for a two-span continuous beam.	(2M)	CO2	BL2
e)	How many slope-deflection equations are required for a continuous beam with 3 spans?	(2M)	CO3	BL
f)	What is meant by chord rotation in the slope-deflection method?	(2M)	CO3	BL:
g)	What is a carryover factor and distributor factor in a moment distribution?	(2M)	CO4	BL
h)	What is the effect of support settlement in the moment distribution method?	(2M)	CO4	BL
i)	What are the characteristics of flexibility method?	(2M)	CO5	BL
j)	What are the typical unknowns in a side-sway portal frame using Kani's method?	(2M)	CO5	BL.

PART-B (5X10 = 50M)

······································	a) Explain analysis of a frame subjected to lateral load by adopting portal method	5(M)	COI	BL2
2	b) Analyze the two storey rigid moment resisting frame shown in Figure by Cantilever method. Draw the BMD and SFD. Assume uniform flexural rigidity of beams and columns 2017 3.6 m 3.6 m	5(M)	COI	BL3
3	Determine the vertical deflection of joint 'E' for the truss shown in fig. take A= 300x10 ⁻⁶ m ² , E= 200x10 ⁶ KN/m ² are constant for bar members. Use strain Energy method.	10(M)	CO1	BL3

				A Commence of the Control of the Con
4	A fixed beam AB of length 6m carries a point load of 160KN and 120 KN eachat a distance of 2m and 4m from left end A. Find the fixed end moments, the reaction at the supports and draw BMD and SFD	10(M)	CO2	BL3
	(OR)			
5	A fixed beam AB of length 6m carries a udl of 4KN/m runs over the left half of the span and there is in addition a concentrated load of 3kN at right quarter as shown in fig. Find the fixed end moments at the ends and reaction.	10(M)	CO2	BL3
6.	Analyze the beam ABCD shown in figure by SlopeDeflection method. Draw shear force and bendingmoment diagram 15kN 35M 200 200 200 200 200 200 200 2	10(M)	CO3	BL3
7.	Analyze the portal frame ABCD shown in figure by Slope Deflection method and take El is constant (21) (21) (21) (21)	10(M)	CO3	BL3
8.	Draw BMD for the continuous beam shown in Figure by using moment distribution method.	10(M)	CO4	BL3
9.	Analyze the portal frame by moment distribution method and draw bending moment diagram. B 2 (21) 4 4 4 7 7 7 7 7 7 7 7 7 7 7	10(M)	CO4	BL3

10	a)Explain procedural steps of analyzing indeterminate structure using Kani's Method.	5(M)	CO5	BL2
	b)Analyze the continuous beam shown in Figure by Kani's method and draw BMD A 20 th M 30 th 100 kh A 20 th M 30 th M 100 kh A 3 M 3 M 3 M 3 M 3 M 3 M 3 M 3 M 3 M 3	5(M)	CO5	BL3
	(OR)		- 10 mm - 10 m	
11.	Analyze the continuous beam shown in Figure by Stiffness matrix method. 240KN 120KN 6 5m 5m 5m 5m 5m	10(M)	CO5	BL3

17