Course Code: 23EC4T03

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

II - B. Tech II-Semester Regular Examinations (BR23), Apr/May - 2025 ELECTROMAGNETIC WAVES & TRANSMISSION LINES (ECE)

Time: 3 hours Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer ALL the question in Part-A and Part-B

$\underline{PART-A (10X2 = 20M)}$			
	Marks	СО	BL
1. a) Define primary constants of a transmission line.	(2M)	CO1	BL1
b) What is the significance of characteristic impedance?	(2M)	CO 1	BL 2
c) Define VSWR.	(2M)	CO 2	BL 1
d) Explain the concept of a quarter-wave transformer.	(2M)	CO 2	BL 2
e) State Gauss's Law.	(2M)	CO3	BL 1
f) Define electric potential.	(2M)	CO3	BL 1
g) Explain the difference between magnetic scalar and vector potentials.	(2M)	CO 4	BL 2
h) State Biot-Savart Law.	(2M)	CO 4	BL 2
i) Define skin depth.	(2M)	CO 5	BL 1
j) What is surface impedance?	(2M)	CO 5	BL 1
PART-B (5X10 = 50M)			
2a. Derive the expressions for phase and group velocities.	5(M)	CO 1	BL 3
b. A transmission line has the following parameters: $R=10~\Omega/km$, $L=5~mH/km$, $G=0.1~mho/km$, and $C=10~\mu F/km$. Calculate the characteristic impedance (Z ₀) of the line.	5(M)	CO 1	BL 3
(OR)			
3a. Explain the characteristics of lossless transmission line.	5(M)	CO 1	BL 2
b. Derive the expression for characteristic impedance.	5(M)	CO 1	BL 3
4. Explain the construction of the Smith Chart. (OR)	10(M)	CO 2	BL 2
5. A 100 Ω transmission line is to be matched to a load of 40 + j30 Ω using a single stub. The frequency of operation is 1 GHz. Determine:	10(M)	CO 2	BL 3
i. The length of the stub.ii. The distance of the stub from the load.			
6. Derive Poisson's and Laplace's equations. (OR)	10(M)	CO 3	BL 4
7a. Explain the concept of energy density in electrostatic fields.	5(M)	CO 3	BL 2
b. Two charges, $Q1 = 10$ nC and $Q2 = -20$ nC, are separated by a distance of 3 m. Find the magnitude of the electrostatic force between them.	5(M)	CO 3	BL 3

8.	A solenoid has 500 turns per meter and carries a current of 2 A. The radius of the solenoid is 2 cm. Calculate:	10(M)	CO 4	BL 3	
	i. The magnetic field intensity inside the solenoid.				
	ii. The magnetic flux density inside the solenoid.				
	iii. The inductance of the solenoid.				
	(OR)				
9a.	Explain Ampere's Circuital Law and its applications in detail.	5(M)	CO 4	BL 2	
b.	Derive the expression for magnetic energy.	5(M)	CO 4	BL 3	
10.	Derive all the relations between E and H in uniform plane waves.	10(M)	CO 5	BL 4	
10.	(OR)	10(11)	COS	DL 4	
11.	A 5 GHz plane wave propagates in a lossy dielectric medium with ε_r = 2.5, μ_r = 1, and σ = 0.02 S/m. Calculate:	10(M)	CO 5	BL 3	

ii.

iii.

iv.

The attenuation constant (α). The phase constant (β). The intrinsic impedance (η). The skin depth (δ). The velocity of propagation (v). v.