Course Code: 23ES2T01

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

I - B. Tech II-Semester Regular/Supplementary Examinations (BR23), June - 2025 BASIC ELECTRICAL AND ELECTRONIS ENGINEERING

		(CSE, CSE-AI&DS, AI&ML, INF)				
		Time: 3 hours	Max. Marks	s: 70		
		Question Paper consists of Part-A and Part-B Answer ALL the question in Part-A and Part-B				
		PART-A (1 X 5 = 5M)				
			Marks	CO	BL	
	1. a)	Define super position theorem.	(1M)	CO 1	L1	
in.	b)	What is the importance of power factor.	(1M)	CO1	L1	
	c)	Write about the different parts of a DC Generator?	(1M)	CO2	L2	
vel.	d)	What are non-conventional sources of energy?	(1M)	CO3	L1	
	e)	What is 1 unit electricity?	(1M)	CO3	L2	
		$(10 \times 3 = 30M)$				
Sign.	2.a)	Explain in detail about electrical circuit elements and write the limitations of Ohm's Law?	(5M)	CO1	L2	
	2.b)	Define Impedance triangle? Define and derive the relationship between Active power, reactive power and apparent power.	(5M)	CO1	L1	
	3.a)	(OR) In the series-parallel circuit shown in the following figure	5(M)	CO1	L3	
		$ \begin{array}{c cccc} R1 & R6 \\ \hline 15\Omega & 5\Omega \\ \hline Vs & R2 & 10\Omega & 3\Omega \\ \hline$				
l.		find:				
14		(i) The total resistance of the circuit.				
33		(ii) The total current flowing through the circuit.				
		(iii) The total power delivered by the voltage source				
	3.b)	Explain the terms Form Factor and Peak factor for a sinusoidal waveform.	5(M)	CO1	L2	
ile.	4.a)	Explain constructional details of the single-phase transformer with a neat sketch.	5(M)	CO2	L2	
96	4.b)	Explain the working of permanent magnet moving coil instrument with a neat	5(M)	CO2	L2	
		sketch.				
	<i>-</i> \	(OR)	E/3 E	000	Y 6	
ľ	5.a)	Explain principle and working of DC Generator?	5(M)	CO2	L2	

5.b)	Explain the fundamental principle of the operation of a Wheatstone Bridge and how it determines an unknown resistance.	5(M)	CO2	L2	
6.a)	Explain the operation of hydroelectric power station with neat schematic diagram. (OR)	10(M)	CO3	L2	
7.a)	Describe the operation of solar power station with a neat block diagram.	5(M)	CO ₃	L1	
7.b)	Draw a neat figure of Miniature circuit breaker and explain the working of MCB.	5(M)	CO3	L1	
	<u>PART-B (1 X 5 = 5M)</u>				
		Marks	СО	BL	
8. a)	What is meant extrinsic semiconductor?	(1M)	CO4	L1	
b)	Draw the input characteristics of CE configuration.		CO4		
c)	Write any two applications of Zener diode	(1M)		L2	
		(1M)	CO5	L2	
d)	Convert the following binary code number (11011) _B to Hexadecimal number	(1M)	CO6	L5	
e)	Draw basic logical gates with neat sketch	(1M)	CO6	L2	
	(10 X 3 = 30M)				
9. a)	Draw the characteristics of a PN junction diode in both forward bias and reverse bias mode of operation.	5(M)	CO4	L1	
9.b)	Explain the input and output characteristics of a transistor in CB configuration. (OR)	5(M)	CO4	L2	
10. a.)	Describe the action of PN junction diode under forward bias and reverse bias.	5(M)	CO4	L2	
10. b)	Explain the input and output characteristics of a transistor in CC configuration	5(M)	CO4	L2	
11. a)	What makes a Zener diode voltage regulator to maintain a constant output voltage?	5(M)	CO5	L1	
11.b)	Draw and explain the block diagram of public address system (OR)	5(M)	CO5	L2	
12. a)	What is rectifier? Explain the working of full wave bridge rectifier with capacitor filter	5(M)	CO5	L1	
12.b)	With a neat sketch, explain the block diagram of Regulated Power Supply.	5(M)	CO5	L2	
13.a)	Draw the truth table and logic diagram of Universal gates and explain their operation	5(M)	CO6	L2	
13.b)	Draw a half-adder circuit using both NAND and NOR gates (OR)	5(M)	CO6	L2	
14 a.)	Convert the following binary form 10111 into Gray Codes, and following Gray	5(M)	CO6	L5	
	Code 1010111 into binary code.				
14.b)	Write short notes on Half Adder and Full Adder	5(M)	CO6	L2	
