Course Code: 23BS2T04

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE

(AUTONOMOUS)

I - B. Tech II-Semester Regular/Supplementary Examinations (BR23), June – 2025 DIFFERENTIAL EQUATIONS & VECTOR CALCULUS (Common to All Branches)

	Time: 3 hours M		Max. Marks: 70	
	Question Paper consists of Part-A and Part-B Answer ALL the question in Part-A and Part-B			
	PART-A (10X2 = 20M)			
		Marks	CO	BL
1. a)	Solve $\frac{ydx - xdy}{x^2} + e^y dy = 0.$	(2M)	CO1	L2
b	State Newton's Law of Cooling and write the differential equation of it.	(2M)	CO1	L1
c)	Solve $(D^2 + 1)y = 0$.	(2M)	CO2	L2
d)	Find the P.I of $(D^2 + 1)y = e^{2x}$.	(2M)	CO2	L2
e)	Form the partial differential equation by eliminating the arbitrary function f from $z = f(2x + y)$.	(2M)	CO3	L2
f)	Solve the partial differential equation, $p + q = 1$.	(2M)	CO3	L2
g)	Find the greatest value of the directional derivative of the function $f = x^2 + y^2 + z^2$ at $(1,1,1)$.	(2M)	CO4	L2
h)		(2M)	CO4	L2
i)	If $\overline{F} = ax\overline{i} + by\overline{j} + cz\overline{k}$, where a, b, c are constants then find $\iint \overline{F} \cdot \overline{n} dS$, where S is the surface of the unit sphere.	(2M)	CO5	L2
j)	State Stoke's theorem.	(2M)	CO5	L1
	PART-B (5X10 = 50M)			
2.a)	Solve $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^2$.	5(M)	CO1	L3
b)	A bacterial culture, growing exponentially, increases from 200 to 500 grams in the period from 6 a.m. to 9 a.m. How many grams will be present at noon. (OR)	5(M)	CO1	L3
3.a)	Solve $x^2ydx - (x^3 + y^3)dy = 0$.	5(M)	CO1	L3
b)	If the temperature of a body is changing from $100^{0}C$ to $70^{0}C$ in 15 minutes, find when the temperature will be $40^{0}C$, if the temperature of air is $30^{0}C$.	5(M)	CO1	L3

4.a) Solve
$$(D^2 = 4)y = 2cos^2x$$
. 5(M) CO2 L2
b) In an electric circuit, inductance(L) = 0.25 Henries, resistance(R) = 250 Ohms, capacitance(C) = 2×10^{-6} Farads, then find the charge q(t).

(OR)
5. Apply the method of variation of parameters to solve
$$\frac{d^3y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$$
6.a) Form a partial differential equation by eliminating the arbitrary constants h, k from $(x - h)^2 + (y - k)^2 + z^2 = a^2$.
b) Solve the partial differential equation, $(y - z)p + (x - y)q = (z - x)$. 5(M) CO3 L3 (OR)
7.a) Form a partial differential equation by eliminating the arbitrary functions $f(x)$ 5(M) CO3 L2 and $g(y)$ from $z = yf(x) + xg(y)$.
b) Solve the partial differential equation, $(D^3 - 7DD^{*2} - 6D^{*3})z = e^{2x+y}$. 5(M) CO3 L3
8.a) Find the directional derivative of $\phi = x^2 - 2y^2 + 4z^2$ at $(1,1,-1)$ in the direction of $2\bar{t} + \bar{t} - 2\bar{k}$.
b) Find $curl \bar{f}$, where $\bar{f} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$. (OR)
9. Show that vector $(x^2 - yz)\bar{t} + (y^2 - zx)\bar{f} + (z^2 - xy)\bar{k}$ is irrotational and find its scalar potential.

10.a) Find the line integral $\int (y^2dx - x^2dy)$ round the triangle whose vertices are $(1,0), (0,1), (-1,0)$ in the xy -plane.
b) Using Gauss Divergence theorem to evaluate, $\iint [(x + z)dydz + (y + z)dzdx + (x + y)dxdy]$ over S, where S is the surface of the sphere $x^2 + y^2 + z^2 = 4$. (OR)

11. Verify Green's theorem $\iint [(2xy - x^2)dx + (x^2 + y^2) dy]$ over the curve C, where C is $10(M)$ CO5 L5

the closed region bounded by the curves: $y = x^2$ and $y^2 = x$.