Course Code: 23EE2T02

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE

(AUTONOMOUS)

I - B. Tech II-Semester Regular/Supplementary Examinations (BR23), June - 2025

NETWORK ANALYSIS (ECE)

Time: 3 hours

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer **ALL** the question in **Part-A and Part-B**

PART-A (10X2 = 20M)

		Mark	CO	BL	
		S			
1.a)	Define passive and active components with examples	(2M)	CO1	TL1	
b)	State the Thevenin's Theorem.	(2M)	CO1	TL1	
c)	Define time constant in R-L and R-C circuits.	(2M)	CO2	TL2	
d)	Define the unit step function and its Laplace transform.	(2M)	CO ₃	TL1	
e)	Draw the phasor diagram of series RL Circuit	(2M)	CO2	TL2	
f)	Describe the phase of series R-C circuit	(2M)	CO2	TL2	
g)	Define quality factor	(2M)	CO4	TL2	
h)	State coefficient of coupling	(2M)	CO ₄	TL1	
i)	Define Z-Parameters	(2M)	CO5	TL2	
j)	Give relationship between Z and Y-Parameters	(2M)	CO ₅	TL2	
	PART-B (5X10 = 50M)				
2.a)	Determine the currents i1 and i2 in the circuit shown below	5(M)	CO1	TL2	
	36V (24V				
	4Ω 3Ω				
b)	Explain the principle of duality with the help of a network	5(M)	CO1	TL3	

3.a) Calculate the value of V_a for the following circuit using KVL.

5(M)

CO₁

TL2

b) Apply superposition theorem and compute current I through 5Ω 5(M) CO2 TL3 Resistor

4.a) Determine the source voltage and phase angle, if the voltage across the resistance is 70 V and across an inductive reactance is 20 V, in an R-L series circuit

b) Explain about star to delta conversion with an example

CO3

CO3

TL2

TL3

5(M)

- 5.a) A voltage V(t) = 177 Sin (314t +10°) is applied to a circuit. It causes a steady state current to flow, which is described by i(t)=14.14 sin(314t-20°). Determine the power factor & Average Power delivered to the circuit.
- b) Find the voltage to be applied across AB in order to drive a current of 5A 5(M) CO3 TL3 into the circuit by using star-delta transformation

- 6.a) Discuss the transient response of Series R-C circuit when dc 5(M) CO3 TL3 voltage is applied to the circuit.
 - b) Find LT of the functions f1(t)= sin wt and f2(t)= e^{-2t} u(t) 5(M)
- 7.a) Solve the expression for i(t) and voltage across capacitor Vc (t) for series 5(M) CO3 TL3 R-L circuit with D.C voltage applied to it at t=0.
 - b) Obtain the Laplace transform of $f(t) = t e^{-2t} \sin(3t)$. 5(M) CO3 TL3
- 8.a) Explain the series resonance with neat diagram
 5(M) CO4 TL4
 Determine quality factor, bandwidth, lower and upper cut off frequencies of a series resonant circuit with R=5Ω, L=0.05H, C=5µf
- 9.a) Explain about dot convention in mutually coupled circuits. 5(M) CO4 TL2

b)	For a series RLC circuit, the applied voltage is $V(t) = 18 \text{Sin wt.At}$ resonance the maximum voltage across the capacitor is 400 V. Find the resonant frequency if the impedance at resonance is 126 Ω and the bandwidth is 350 rad/sec. Find also the circuit constants.	5(M)	CO4	TL3
10.a)	Formulate expressions for the Y-parameters in terms of ABCD parameters of a two-port network	5(M)	CO5	TL3
b)	Define open circuit parameters. Explain how the open circuit parameters can be obtained for a given two port network. (OR)	5(M)	CO5	TL4
1.a)	Explain about the parameters used for series connected 2-port network.	5(M)	CO ₅	TL3
b)	Find the complete set of Y-parameters which describe the two-port network shown	5(M)	CO5	TL3
