BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (An AUTONOMOUS INSTITUTION, APPROVED BY AICTE-NEW DELHI, PERMANENTLY AFFILIATED TO JNTUK-KAKINADA, ACCREDITED BY NAAC 'A' GRADE, 2 PROGRAMMES (CSE,EEE) ACCREDITED BY NBA (For A.Y 2023-24 to 2025-26) Post Box: 26, Amalapuram 533201, Dr.B R Ambedkar Konaseema Dt., A.P. | II Year I Semester | DISCRETE MATHEMATICS AND GRAPH | L | T | P | C | |--------------------|---|---|---|---|---| | | THEORY (23BS3T04) (Common to CSE, INF, CSE-AI&DS, AI&ML | 3 | 0 | 0 | 3 | | | Branches) | | | | | #### **Course Objectives:** - To introduce the students to the topics and techniques of discrete methods and combinatorial reasoning. - To introduce a wide variety of applications. The algorithmic approach to the solution of problems is fundamental in discrete mathematics, and this approach reinforces the close ties between this discipline and the area of computer science. #### Course Outcomes: At the end of the course students will be able to - 1. Build skills in solving mathematical problems (L3) - 2. Comprehend mathematical principles and logic (L4) - 3. Demonstrate knowledge of mathematical modeling and proficiency in using mathematical software (L6) - 4. Manipulate and analyze data numerically and/or graphicallysing appropriate Software(L3) - 5. How to communicate effectively mathematical ideas/results verbally or in writing(L1) ### UNIT-I: Mathematical Logic: Propositional Calculus: Statements and Notations, Connectives, Well Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus, Consistency of Premises, Indirect Method of Proof, Predicate Calculus: Predicates, Predicative Logic, Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for Predicate Calculus. #### **UNIT-II: Set Theory:** Sets: Operations on Sets, Principle of Inclusion-Exclusion, Relations: Properties, Operations, Partition and Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering, Hasse Diagrams, Functions: Bijective, Composition, Inverse, Permutation, and Recursive Functions, Lattice and its Properties. -108MM. # BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (An AUTONOMOUS INSTITUTION, APPROVED BY AICTE-NEW DELHI, PERMANENTLY AFFILIATED TO JNTUK-KAKINADA, ACCREDITED BY NAAC 'A' GRADE, 2 PROGRAMMES (CSE,EEE) ACCREDITED BY NBA (For A.Y 2023-24 to 2025-26) Post Box: 26, Amalapuram 533201, Dr.B R Ambedkar Konaseema Dt., A.P. # **UNIT-III: Combinatorics and Recurrence Relations:** Basis of Counting, Permutations, Permutations withRepetitions, Circular and Restricted Permutations, Combinations, RestrictedCombinations, Binomial and Multinomial Coefficients and Theorems. #### **Recurrence Relations:** Generating Functions, Function of Sequences, Partial Fractions, Calculating Coefficient of Generating Functions, Recurrence Relations, Formulation as Recurrence Relations, Solving Recurrence Relations by Substitution and Generating Functions, Method of Characteristic Roots, Solving Inhomogeneous Recurrence Relations # UNIT-IV: Graph Theory: Basic Concepts, Graph Theory and its Applications, Subgraphs, Graph Representations: Adjacency and Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerian and Hamiltonian Graphs. # Unit-V: Multi Graphs Multigraphs, Bipartite and Planar Graphs, Euler's Theorem, Graph Colouring and Covering, Chromatic Number, Spanning Trees, Prim's and Kruskal's Algorithms, BFS and DFS Spanning Trees. #### **TEXT BOOKS:** - 1. Discrete Mathematical Structures with Applications to Computer Science, J. P. Tremblay and P. Manohar, Tata McGraw Hill. - 2. Elements of Discrete Mathematics-A Computer Oriented Approach, C. L.Liu and D.P. Mohapatra, 3rd Edition, Tata McGraw Hill. - 3. Theory and Problems of Discrete Mathematics, Schaum's Outline Series, Seymour Lipschutz and Marc Lars Lipson, 3rd Edition, McGraw Hill. ### REFERENCE BOOKS: - 1. Discrete Mathematics for Computer Scientists and Mathematicians, J. L.Mott, A. Kandel and T. P. Baker, 2nd Edition, Prentice Hall of India. - 2. Discrete Mathematical Structures, Bernand Kolman, Robert C. Busby and Sharon Cutler Ross, PHI. - 3. Discrete Mathematics, S. K. Chakraborthy and B.K. Sarkar, Oxford, 2011. - 4. Discrete Mathematics and its Applications with Combinatorics and GraphTheory, K.H. Rosen, 7th Edition, Tata McGraw Hill. -6812.