Course Code: 24BB1C07

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

I-BBA I-Semester Supplementary Examinations (BR24), Jul - 2025 BUSINESS STATISTICS AND LOGIC (BBA)

	`S								Ma	x. Mark	s: /0
		~		Paper co L L the qu							
				PART-	A (10X2	= 20M)					
									Marks	CO	BI
a) Define	Statistics								(2M)	CO1	BL
) Define	primary a	nd second	dary data						(2M)	CO1	BL
) Define	concept of	f central	tendency						(2M)	CO2	BI
) Find H	Iarmonic m	ean for t	he data: 8	8, 10, 40,	26.				(2M)	CO2	BL
) Calcul	Calculate the range of the data set:25, 30, 35, 40, 45								(2M)	CO3	BI
Write	any one for	mula for	measuri	ng degree	e of skew	ness			(2M)	CO3	BL
g) What	s a scatter	diagram?	Mention	its uses					(2M)	CO4	BI
n) Write	formula for	rank con	relation	with tie					(2M)	CO4	BL
) Find t	ne missing	value in	he given	series: 3	7, 39, 42	, 47, 54,	78		(2M)	CO5	BL
	rtain code on in that code		ER" is w	ritten as '	'OBESFI	H". How	is "OPP	OSITE"	(2M)	CO5	BL
				PART-	B (5X10	= 50M)					
a) Explain rules of tabulation						(5M)	CO1	В			
b) Expla	in significa	nce of D	agrams a	and Grap	hs				(5M)	CO1	
, 1	Ü		C	(OR)							
Draw his	togram and	I find ave	erage for	. ,	wing data	a			(10M)		
214.11	rogram and		1480 101		The date	-			(101.1)	CO1	D
Marks	like-et lei	0 -10		20-30	30-40	40-50	50-60	0		CO1	В
Numbe	r of student	s 15	25	60	40	35	25				
Calculat	e the lower	and uppe	er quartil	es from	the follo	wing dat	ta		(10M)		
GI	10.51	T			0.05				(101.1)	CO2	В
Class	0 -5 nev 7				0-25					CO2	D
Freque	icy /	25	50 8	$\frac{10}{\text{(OR)}}$	00						
Compute	mode of the	ne folloy	vino data						(10M)		
Class	0 -10		20-30	30-40	40-50	50-60	60-70	70-80	(TOIVI)	CO2	В
Freque		8	7	12	28	20	10	10			
	-							-			
									(1010		
Evnlain	Measure of	Dienerei	on? Writ	e about r	ange gu	artile des	ziation M	Mean	(10M)	CO3	В
Laplain		deviation		e about I	ange, qu	artife uev	vianon, 1	vicali		003	D

Class	0 -5	5-10	10-1	5 15	-20	20-25	25	5-30	30-3	35	35-40			CO3
Frequency	2	5	7	13		21	16	6	8		3			
Compute co		n coeff	icient	betwe	en su	pply ar	nd prie	ce of	comm	odity	using		(10M)	
	1	1				T								CO4
Supply	152	158	169	18	200.00	160		66	182					
Price	198	178	167	15		180	1	70	162					
					(OR	(.)							(4.03.6)	
Define corre	lation	acaffic:	ant C	alaula	to Do	,, lr 00m	ualatia		fficia;	+ for	41a a		(10M)	
following da		coemic	ent. C	aicuia	ie Ka	nk com	relatio	п сое	Hiciei	ii ior	ine			
Marks in M		35	54	80	95	73	73	44	91	77	81			CO4
				70	10				71	5.0		4		
Marks in F	nolish	39	155	/X	49	6/	22	62	/ /	100	69	1		
Marks in E		39 0.R.S ar	55	78	49	67	55 ferent	62	of Ch	56	69 i		(5x2=	
i) Five frier Calcutta, D Bus, Train, travelled to went to Caltrain.(v) Mu	nds P,Q elhi, Ba Aero p Delhi cutta b umbai i	e,R,S an angalor blane, C did not y aero j	and T travel plane.(avelled Hyder I Boat by boa iv) S t ed by	d to f abad from at.(iii	ive diff by five Mum) R we led by o Delhi	ferent e diffe bai (ii nt to l boat v i and (cities erent r) The Banga where Chem	of Ch nodes perso alore b as T to	enna of tra n who y car ravell	i, inspor o and Q ed by		(5x2= 10M)	COS
i) Five frier Calcutta, D Bus, Train, travelled to went to Cal train.(v) Mu	nds P,Q elhi, Ba Aero p Delhi cutta b umbai i	g,R,S are angalor olane, Codid not y aero part of the of tra	ad T travel plane.(onnect	avelled Hyder I Boat by boa iv) S t ed by	d to f abad from at.(iii ravel bus t	ive differ by five a Mumber of R we led by to Delhi	ferent e diffe bai (ii nt to l boat v i and (cities erent r) The Banga where Chenr d by	of Chanodes persoalore bas T thai. Th	denna of tra n who y car ravell	i, inspor o and Q ed by		,	CO
i) Five frier Calcutta, D Bus, Train, travelled to went to Caltrain.(v) Mu 1) What is to 3) Which co	nds P,Q elhi, Ba Aero p Delhi cutta b umbai i the mod	e,R,S ar angalor olane, C did not y aero p as not co de of tra	and T travel plane.(connect anspor	avelled Hyder I Boat by boa iv) S t ed by	d to f abad from at.(iii ravel bus t	ive differ by five a Mumber of R we led by to Delhi	ferent e diffe bai (ii nt to l boat v i and (cities erent r) The Banga where Chenr d by	of Chanodes persoalore bas T thai. Th	denna of tra n who y car ravell	i, inspor o and Q ed by		,	COS
i) Five frier Calcutta, D Bus, Train, travelled to went to Cal train.(v) Mu	nds P,Q elhi, Ba Aero p Delhi cutta b umbai i the mod	e,R,S ar angalor olane, C did not y aero p as not co de of tra	and T travel plane.(connect anspor	avelled Hyder I Boat by boa iv) S t ed by	d to f abad from at.(iii ravel bus t	ive differ by five a Mumber of R we led by to Delhi	ferent e diffe bai (ii nt to l boat v i and (cities erent r) The Banga where Chenr d by	of Chanodes persoalore bas T thai. Th	denna of tra n who y car ravell	i, inspor o and Q ed by		,	CO
i) Five frier Calcutta, D Bus, Train, travelled to went to Caltrain.(v) Mu 1) What is to 3) Which co	nds P,Q elhi, Ba Aero p Delhi cutta b umbai i the mod	e,R,S ar angalor olane, C did not y aero p as not co de of tra	and T travel plane.(connect anspor	avelled Hyder I Boat by boa iv) S t ed by	d to f abad from at.(iii cravel bus to ? 2) V whice	ive diff by five Mumb) R we lled by o Delhi Who tra	ferent e diffe bai (ii nt to l boat v i and (cities erent r) The Banga where Chenr d by	of Chanodes persoalore bas T thai. Th	denna of tra n who y car ravell	i, inspor o and Q ed by		,	COS
i) Five frier Calcutta, D Bus, Train, travelled to went to Caltrain.(v) Mu 1) What is to 3) Which co	nds P,Q elhi, Ba Aero p Delhi cutta b umbai i the mod	e,R,S ar angalor olane, C did not y aero p as not co de of tra	and T travel plane.(connect anspor	avelled Hyder I Boat by boa iv) S t ed by	d to f abad from at.(iii ravel bus t	ive diff by five Mumb) R we lled by o Delhi Who tra	ferent e diffe bai (ii nt to l boat v i and (cities erent r) The Banga where Chenr d by	of Chanodes persoalore bas T thai. Th	denna of tra n who y car ravell	i, inspor o and Q ed by		,	COS
