Course Code: 23MC2T09

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

I – MCA II - Semester Regular/Supplementary Examinations (BR23), June/July - 2025 Design and Analysis of Algorithms (MCA)

Time: 3 hours Max. Marks: 70

Answer any Five Questions One Question for One UNIT ALL the Question Carry Equal Marks

		UNIT-I	Manles	CO	DI	
	1.a)	Discuss different asymptotic notations with graphical representation.	Marks 7M	CO ₁	BI Li	
	b)	Write and explain the steps involved in analyzing an algorithm. OR	7M	CO1	L	
	2.a)	Analyse the recursive and iterative algorithms for factorial computation.	7M	CO ₁	L	2
	b)	Explain the concept of space complexity with a suitable example.	7M	CO1	L	3
		UNIT-II	Marks	CO	B	L
	3.a)	Describe Merge Sort and derive its time complexity.	7M	CO2	L	1
	b)	Write an algorithm for Quick Sort and trace it for the input: [20, 10, 30, 5, 80].	7M	CO2	L	5
		OR				
	4.a)	Discuss Strassen's matrix multiplication and compare it with conventional matrix multiplication.	7M	CO2	L	2
	b)	Write a divide-and-conquer algorithm to find the single source shortest path problem.?	7M	CO2	L	6
		UNIT-III	Marks	CO	B	L
	5.a)	Apply Dijkstra's algorithm on a given graph and compute the shortest path.	7M	CO3	L	1
	b)	Differentiate between Prim's and Kruskal's algorithm with examples. OR	7M	CO3	L	5
	6.a)	Explain the concept of optimal binary search trees (OBST).	7M	CO3	L	1
	b)	Solve the All-Pairs Shortest Path problem using dynamic programming.	7M	CO3	L	5
		UNIT-IV	Marks	C	0	BL
		ve the 0/1 Knapsack problem using dynamic programming.	7M	CO4 L1		L1
b)		plain the traveling salesman problem and its dynamic programming ution.	7M	CO	O 4	L2
		OR				
		cuss the graph colouring problem using backtracking.	7M		CO4 L1	
b)	Exp	plain the 8-Queens problem and provide its backtracking solution.	7M	C	O4	L1
		UNIT-V	Marks	CO	B	L
9.a)		Differentiate between P, NP, NP-complete, and NP-hard problems.	7M	CO5 L4		
	b)	Explain Cook's theorem and its significance in NP-completeness. OR	7M	CO5	L	
	10.a)	What is a decision problem? Describe how satisfiability can be shown to be NP-complete.	7M	CO5	L.	5
	b)	Explain approximation algorithms and their necessity. ********	7M	CO5	L	2