Course Code:23CE4T02

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

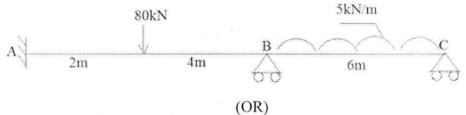
II - B. Tech II-Semester Supplementary Examinations (BR23), Aug - 2025 STRUCTURAL ANALYSIS (CE)

	Time: 3 hours					Max. M	Max. Marks: 70		
		~	-		of Part-A and Part-B in Part-A and Part-B				
			PART	–A (10Σ	$\zeta 2 = 20M$				
						Marks	CO	BL	
. a)	Explain the terms Sta	itic Indetern	ninacy and	d Degree	e of Indeterminacy.	(2M)	CO1	BL2	
b)	Explain how lateral le	oads are dev	veloped or	n a struc	tural frame?	(2M)	CO1	BL	
c)	How fixed beams car	be statical	ly determi	inate?		(2M)	CO2	BL2	
d)			enerated when any support sinks by an amount of δ in L and flexural rigidity EI?				CO2	BL3	
e)	Explain slope deflect supports and with un			_	ntinuous beam with three	(2M)	CO3	BL2	
f)	State two assumption	s made in t	he analysi	s of Slo	pe deflection method?	(2M)	CO3	BL2	
g)	Define and explain stiffness and distribution factor.					(2M)	CO4	BL	
h)	Write the use of carryover factor in moment distribution method.					(2M)	CO4	BL	
i)	When does the stiffness method is more suitable than flexibility method?					(2M)	CO5	BL	
j)	What is Kani's metho	od and what	t is the ter	minolog	y used in Kani's method?	(2M)	CO5	BL	
	Discuss the difference becample.	oetween Poi	rtal metho		antilever method with an	10(M)	CO1	BI	
. <i>A</i>	Analyse the frame show	vn in figure	by Portal	method	5	10(M)	CO1	BI	
	40	147							
		F	*	D	3.5 m				
	80	kN P	Q	R	1				
		A	В	C	√√ √50 m				
		5	m + 4	75 m	1				
c is	arrying an udl of 5kN/s 6M carrying an udl	m, span BC	c is 14M c	arrying	or three spans. Span AB is 9 an udl of 5kN/m and span O over supports B and C. Dr	CD	CO2	BI	
S	S.F.D and B.M.D.		(OR))					
1000						CONTRACTOR AND ADDRESS OF STREET			

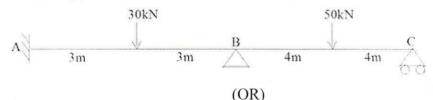
Derive the equation for a fixed beam with ends at different levels.

5.

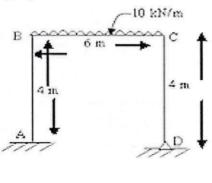
BL3


CO₂

10(M)


6. A continuous beam is built in at A and it is carried over rollers at B and C with 10(M) CO3 BL3 spans of AB and BC being 10m. The beam carries a uniformly distributed load of 7.5KN/m over AB and a point load of 50KN over BC 2.5m from the support B, which sinks by 20mm. Values of E and I are 2 x 10⁵N/mm² and 2 x 10⁹mm⁴. Calculate the support moments and draw bending moment diagram giving critical values. Use Slope deflection method.

(OR)


- Analyse the portal frame by slope deflection method. Draw the bending moment 10(M) CO3 BL4 diagram and sketch the deflected shape of the structure. The two columns of AB and CD of 4m height with I, Beam BC of span 4m, with 2I. The beam BC carries an udl of 10 kN/m. The supports at A and D are fixed.
- 8. Analyse the continuous beam shown in fig. by moment distribution method. 10(M) CO4 BL4 Assume down ward settlement at B and C are 10mm and 5mm respectively. And uniform flexural rigidity of beam AB and BC= EI=18 x10¹¹ N-mm².

- 9. Analyse the portal frame by moment distribution method. Draw the bending 10(M) CO4 BL4 moment diagram and sketch the deflected shape of the structure. The two columns of AB and CD of 4m height with 2I, Beam BC of span 5m, with I. The beam BC carries an udl of 20 kN/m. The supports at A and D are fixed.
- 10. Analyse the continuous beam shown in fig. by Stiffness method. Assume uniform 10(M) CO5 BL4 flexural rigidity of beam AB and BC= EI=12x1011 N-mm².

11. Analyse the frame shown in fig. by Kani's method

10(M)

CO₅

BL4