Course Code: 23EC4T03

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

II - B. Tech II-Semester Supplementary Examinations (BR23), Aug - 2025 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES (ECE)

Time: 3 hours	Max. Marks: 70	

Ouestion Paper consists of Part-A and Part-B

PART-A (10X2 = 20M)			
	Marks	CO	BL
a) Write the secondary parameters of transmission lines	(2M)	CO1	L
b) Explain microstrip transmission lines	(2M)	CO1	L
c) Write the applications of smith charts	(2M)	CO ₂	L
d) Define VSWR and draw the waveform representation	(2M)	CO ₂	L
e) State Coulombs law and write the expression	(2M)	CO3	L
f) Differentiate isotropic and homogeneous dielectrics	(2M)	CO3	L
g) Explain magnetic flux density	(2M)	CO4	L
h) Write the maxwell equations for time invariant fields	(2M)	CO4	L
i) Define uniform plane form and draw the waveform.	(2M)	CO5	L
j) State and write the expression for Poynting theorem	(2M)	CO5	L
PART-B (5X10 = 50M)			
Explain primary and secondary constants and also write the expressions for secondary constant interns of primary. The constants per km of a certain cable are: R = 6.75ohms; L =		CO1	L
5.5mH; C = 0.00872 μ fd and G = 0.4 μ mhos. Calculate the Characteristic impedance, attenuation constant and phase velocity when w = 5000 radians per second			Ι
(OR)	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
Derive the transmission line equations	5(M)	CO1	L
Explain lossless and distortable transmission lines	5(M)		L
	500	COO	
Explain "UHF Lines as Circuit Elements"	5(M)	CO2	L
Write short nots on single stub and double stub matching (OR)	5(M)		L
What is a Smith Chart? and explain the various applications of smith	5(M)	CO2	L
chart in Transmission line		*	

6a.

State and derive coulombs law in vector form

Page 1 of 2

5(M)

CO₃

L2

b. •	Derive electric field intensity for line charge			
		5(M)		L2
	(OR)			
7a.	State and derive continuity equation	5(M)	CO3	L2
b.	State and explain gauss law & its applications			
		5(M)		L2
90		500	CO4	1.0
8a.	State and derive Biot-savart law	5(M)	CO4	L2
b.	Derive maxwell's two equations for magnetostatic fields	500		1.2
	(OR)	5(M)		L2
9a.	(OK)	5(M)	CO4	L2
b.	Explain ampere's circuital law and applications	3(WI)	C04	1.2
o.	Explain and derive the inconsistency of ampere's law	5(M)		L2
		3(111)		LL
10a	State and derive total internal reflection and Brewster angle.	5(M)	CO5	L2
b.	What is characteristic impedance and derive the relation between E	5(M)		
	and H in lossless medium.			L2
•	(OR)			
11a	Derive the wave equations for perfect dielectric media	5(M)	CO5	L2
b.	Define polarization and explain the different polarizations	5(M)		L2
