

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE

(AUTONOMOUS)

III - B. Tech I-Semester Regular Examinations (BR23), DECEMBER - 2025 ENGINEERING HYDROLOGY (CIVIL ENGINEERING)

Time: 3 hours

Course Code: 23CE5T02

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer ALL the question in Part-A and Part-B

PART-A (10X2 = 20M)

		Marks	CO	BL
1. (a)	Define catchment area and write water-budget equation.	(2M)	C312.1	BL1
1. (b)	Define mass curve and hyetograph along with its graphical representation.	(2M)	C312.1	BL1
1. (c)	Define Potential Evapotranspiration and Actual Evapotranspiration.	(2M)	C312.2	BL1
1. (d)	Define Φ-Index and W-Index. Also write its formula.	(2M)	C312.2	BL1
1. (e)	Differentiate between interflow and baseflow.	(2M)	C312.3	BL2
1 (f)	Define unit hydrograph and effective rainfall.	(2M)	C312.3	BL1
1. (g	What is flood and write down the causes of flood.	(2M)	C312.4	BL1
1. (h	Define flood routing and write down Muskingum equation.	(2M)	C312.4	BL1
1. (i)	Define specific yield and specific retention.	(2M)	C312.5	BL1
1: (j)	State Darcy's law.	(2M)	C312.5	BL2

PART-B (5X10 = 50M)

2	Explain "Hydrological Cycle" and its components with neat sketch.						10(M)	C312.1	BL3	
	and the second	superior in the		(OR)			Section (III)			
3	A catchment area has six raingauge stations. In a year, the annual rainfall recorded by the gauges are as follows:							10(M)	C312.1	BL5
	Station	A	В	C	D	E	. F			
	Rainfall (cm)	82.6	102.9	180.3	110.3	98.8	136.7			
	a) Determine the standard error in the estimation of mean rainfall in the existing set of raingauges.b) For a 10% error in the estimation of the mean rainfall, calculate the optimum number of raingauge stations in the catchment.									

4	Define Evaporation. Explain the factors affecting evaporation and also explain the measures to be taken to reduce the evaporation losses.	10(M)	C312.2	BL1
	(OR)			18
5	Define infiltration capacity. The infiltration capacity in a basin is represented by Horton's equation –	10(M)	C312.2	BL5
	where is in cm/hr and is in hours. Assuming the infiltration to take place at capacity rates in a storm of 60 minutes duration, estimate the depth of			
	in filtration in – i. the first 30 minutes.			

	ii. the	e second 30 min	utes of the storm	1.					
6	Annual rainfall and runoff values (in cm) of a catchment spanning a period of 21 years are given below. Analyse the data to — i. Estimate the 75% and 50% dependable annual yield of the catchment. ii. Develop a linear correlation equation to estimate annual runoff volume for a given annual runoff value.						10(M)	C312.3	BL6
	Year	Annual	Annual	Year	Annual	Annual			
		rainfall (cm)	runoff (cm)	1006	rainfall (cm)	runoff (cm)			
	1975	118	54	1986	75	17			
	1976	98	45	1987	107	32			
	1977	112	51	1988	75	15			
	1978	97	41	1989	93	28			
	1979	84	21	1990	129	48			
	1980	91	32	1991	153	76			
	1981	138	66	1992	92	27			
	1982	89	25	1993	84	18			
	1983	104	42	1994	121	52		10	
	1984	80	11	1995	95	26			
	1985	97	32						
8	Analysis of annual flood series of a river yielded a sample mean of 1000 m³/sec and standard deviation of 500 m³/sec. Estimate the design flood of a structure on this river to provide 90% assurance that the structure will not fail in the next 50 years. Use Gumbel's method and assume the sample size to be very large. Take						10(M)	C312.4	BL4
	and	e Gumber's me			ne size to be re	if larger rance			
	Lara		((OR)			1000	0212.4	DIO
9	Differentiate between – i. Hydraulic routing and Hydrologic routing ii. Reservoir routing and Channel routing						10(M)	C312.4	BL2
10							10(M)	C312.5	BL2
				OR)					
11	 a) Derive the equation for the steady flow in a confined aquifer. b) A 30 cm diameter well completely penetrates a confined aquifer of permeability 45 m/day. The length of the strainer is 20 m. Under steady state of pumping, the drawdown at the well was found to be 3 m and the radius of influence was 300 m. Calculate the discharge. 						10(M)	C312.5	BL6
