Course Code: 23CS5T03

BONAM VENKATA CHALAMAYYA INSTITUTE OF TECHNOLOGY & SCIENCE (AUTONOMOUS)

III - B. Tech I-Semester Regular Examinations (BR23), Nov/Dec - 2025 Formal Languages and Automata Theory (CSE) Time: 3 hours

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer ALL the question in Part-A and Part-B

PART-A (10X2 = 20M)

		Marks	CO	BI
1. a)	Define a finite automaton and write its various applications	(2M)	CO1	1
b)	What is Kleene Closure and Positive Closure? Differentiate with examples.	(2M)	CO1	2
c)	Define regular expression?	(2M)	CO2	1
d)	Write the properties of regular expression.	(2M)	ĊO2	3
e)	Define Ambiguous Grammars?	(2M)	CO3	1
f)	Write the applications of Context Free Grammars.	(2M)	CO3	3
g)	What isPushdown Automata and draw its model.	(2M)	CO4	2
h)	Write the application of Pushdown Automata.	(2M)	CO4	3
i)	Define Church's Thesis.	(2M)	CO5	1
j)	What is Post's Correspondence Problem(PCP).	(2M)	CO5	3

PART-B (5X10 = 50M)

2a. b.	Explain the Central Concepts of Automata Theory. Design a DFA L(M) = $\{w \mid w \in \{0, 1\}^*\}$ and W is a string that does not contain consecutive 1's.	05(M) 05(M)	CO1	4
	(OR)			
3a. b.	Depict the steps in converting an NFA with ∈ into NFA without ∈ with an example. With an example, explain the procedure for converting a Moore Machine into Melay machine.	05(M) 05(M)	CO1	5

4a. b.	Explain about the identity rules of Regular Expressions? Explain the Pumping lemma for the regular sets.	05(M) 05(M)	CO2	4
5a. b.	(OR) Construct Finite Automata for the regular Expression 1(01+10)*00? Explain about the Closure Properties of Regular sets?	05(M) 05(M)	CO2	4

S → AB A → BSB A → a B → b b. Obtain the Chomsky normal form for the following grammar E→ E+T/T, T→ a/CE? (OR) 7a. Discuss the simplification of context free grammar. What is the importance of useless symbols and unit productions in it? b. Consider the CFG with {S,A,B} as the non-terminal alphabet, {0,1} as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B A → 0A / ∈ B → 0B / 1B / ∈ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and	6a.	Convert the grammar into Greibach Normal Form.	05(M)	CO3	5
A → BSB A → a B → b b. Obtain the Chomsky normal form for the following grammar E → E+T/T, T → a/CE? (OR) 7a. Discuss the simplification of context free grammar. What is the importance of useless symbols and unit productions in it? (OR) 5 Consider the CFG with {S,A,B} as the non-terminal alphabet, {0,1} as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B A → 0A / ∈ B → 0B / 1B / ∈ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and			100	003.	3
A → a B → b b. Obtain the Chomsky normal form for the following grammar E→ E+T/T, T→ a/CE? (OR) 7a. Discuss the simplification of context free grammar. What is the importance of useless symbols and unit productions in it? b. Consider the CFG with {S,A,B} as the non-terminal alphabet, {0,1} as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B A → 0A / ∈ B → 0B / 1B / ∈ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and			03(11)	\"	
 b. Obtain the Chomsky normal form for the following grammar E→ E+T/T, T→ a/CE? (OR) 7a. Discuss the simplification of context free grammar. What is the importance of useless symbols and unit productions in it? b. Consider the CFG with {S,A,B} as the non-terminal alphabet, {0,1} as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B A → 0A / ∈ B → 0B / 1B / ∈ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and 					
T→ a/CE? (OR) 7a. Discuss the simplification of context free grammar. What is the importance of useless symbols and unit productions in it? b. Consider the CFG with {S,A,B} as the non-terminal alphabet, {0,1} as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B A → 0A / ∈ B → 0B / 1B / ∈ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 1	
 Discuss the simplification of context free grammar. What is the importance of useless symbols and unit productions in it? Consider the CFG with {S,A,B} as the non-terminal alphabet, {0,1} as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B A → 0A / ∈ B → 0B / 1B / ∈ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and 	b.		1 4		
 Discuss the simplification of context free grammar. What is the importance of useless symbols and unit productions in it? Consider the CFG with {S,A,B} as the non-terminal alphabet, {0,1} as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B A → 0A / ∈ B → 0B / 1B / ∈ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and 		(OR)			1
 useless symbols and unit productions in it? Dos(M) Consider the CFG with {S,A,B} as the non-terminal alphabet, {0,1} as the terminal alphabet, S as the start symbol and the following set of production rules S → A1B A → 0A / ∈ B → 0B / 1B / ∈ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and 	7a.		05(M)	CO3	5
terminal alphabet, S as the start symbol and the following set of production rules $S \rightarrow A1B$ $A \rightarrow 0A / \in B \rightarrow 0B / 1B / \in B$ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and		useless symbols and unit productions in it?		CO3	3
$B \rightarrow 0B / 1B / \in$ For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and	b.	terminal alphabet, S as the start symbol and the following set of production rules			
For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and		$A \rightarrow 0A / \in$			
For the string w = 00101, find the Leftmost derivation, Rightmost derivation, and		$B \rightarrow 0B / 1B / \in$			
		For the string $w = 00101$, find the Leftmost derivation, Rightmost derivation, and Parse Tree.			

8a.	Define Push Down Automata (PDA). Discuss about the languages accepted by PDA.	05(M) 05(M)	CO4	3
b.	Construct a PDA for L={ $wcw^R / w \epsilon (0+1)^*$ }			
	(OR)		7	
9a.	Show the procedure and explain to find the equivalence of PDA and context free grammar.	05(M) 05(M)	CO4	3
b.	Construct a PDA equivalent to the following grammar: S→ aAA, A →aS bS a	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

10a	Explain the differences between NP complete and NP-hard problems.	05(M)	CO5	3
b.	Construct Turing machine for $L = \{a^n b^m a^{(n+m)} \mid n, m \ge 1\}$	05(M)		
	(OR)		-	
11a	Write about halting problem in Turing machines.	05(M)	CO5	3
b.	Define Turing Machine? Explain about the Model of Turing Machine?	05(M)		

Tyron

-toghing-