

*Question Paper consists of Part-A and Part-B
Answer ALL the question in Part-A and Part-B*

PART-A (10X2 = 20M)

	Marks	CO	BL
1. a) Define Operating System.	(2M)	1	1
b) List any two operating system services.	(2M)	1	2
c) Define process.	(2M)	2	1
d) Explain Process Control Block (PCB).	(2M)	2	2
e) Define paging.	(2M)	3	1
f) Explain virtual memory.	(2M)	3	2
g) Define critical section.	(2M)	4	1
h) Explain semaphore.	(2M)	4	2
i) Define file.	(2M)	5	1
j) Explain disk scheduling.	(2M)	5	2

PART-B (5X10 = 50M)

2a.	Explain types of operating systems with examples.	5(M)	1	2
b.	Explain operating system services.	5(M)	1	2
	(OR)			
3a.	Describe the structure of OS with diagram.	5(M)	1	2
b.	Explain system calls and their types.	5(M)	1	2
	(OR)			
4a.	Analyse process state diagram with transitions.	5(M)	2	4
b.	Explain inter-process communication.	5(M)	2	2
	(OR)			
5a.	Analyse the criteria used for CPU scheduling and explain how each criterion affects system performance.	5(M)	2	4
b.	Apply FCFS process scheduling for processes with arrival times 0,2,4,6 and burst times 5,3,8,6.	5(M)	2	3

6a.	Apply the contiguous memory allocation techniques and explain their advantages and limitations.	5(M)	3	3
b.	Explain the concept of paging and explain the page table in address translation. (OR)	5(M)	3	3
7a.	Explain the concept of virtual memory and discuss its significance in modern operating systems.	5(M)	3	3
b.	Apply the concept of demand paging and explain its working process with a suitable example.	5(M)	3	3
8a.	What is process synchronization and explain how they help in maintaining data consistency.	5(M)	4	3
b.	Analyze critical section problem and its solution requirements. (OR)	5(M)	4	4
9a.	Explain deadlock characterization conditions in operating systems.	5(M)	4	2
b.	Apply deadlock prevention methods to avoid system deadlocks.	5(M)	4	3
10a	Explain file access methods used in file systems.	5(M)	5	2
b.	Explain directory structures and their advantages. (OR)	5(M)	5	2
11a	Apply file allocation methods used in operating systems.	5(M)	5	3
b.	Apply SCAN disk scheduling algorithm with suitable example.	5(M)	5	3
